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The Baryon Asymmetry
Experiments show that:

This number is roughly consistent as determined by 
the anti-protons in cosmic rays, relic abundance of 
baryonic matter, nucleosynthesis, and the CMB (which 
is currently the most precise determination.

The SM contained the right ingredients to explain it, 
but fails because the EW phase transition is predicted 
to be second order, and the CKM phase is not 
sufficiently large.
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An Earlier Phase Transition?
I would like to explore the idea that some new physics 
operating at slightly above the EW scale is responsible 
for baryogenesis.

The particular idea I will explore is that the EW gauge 
interactions are extended to more symmetries.  When 
these break down to the ordinary EW interactions 
(through a scaled up version of the Higgs mechanism), 
the phase transition generates B and L.

The challenge is that below the new phase transition, 
the ordinary EW sphalerons are still going full strength.  
They will try to wipe out any B I generate this way.



Top-flavor
Top-flavor expands the weak 
interactions into an SU(2) for 
the third generation, and one 
for the first and second 
generations.  So we have a pair 
of W’s and a Z’.

The ordinary weak interactions 
are the diagonal subgroup (and 
are close to family universal).

Dimensional deconstruction 
suggests this has similar 
physics to an extra-dimensional 
theory of flavor.
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Fermion Masses
We can generate third family 
Yukawa interactions very 
easily because the Higgs is 
charged under the same SU(2) 
as the third family doublets.

To generate the first two 
family fermion masses, we 
include a “spectator” Higgs H’.

The Σ Higgs acts as a bridge 
between H and H’, giving mass 
to the light fermions, i.e.:
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These interactions will turn out to be important later!



Precision EW Constraints
Precision EW constraints 
were considered by a 
number of authors.

The most stringent 
bounds come from non-
universality of the third 
family couplings to the Z 
(bottom and τ).  We do a 
gobal fit to LEP and SLD.

Instantons also bound 
the coupling from proton 
decay. M2
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Phase Transition
At high energies, top-flavor has two sectors of 
instantons, one acting on the third family and one on the 
first two families.

I’ll consider the limit of large coupling in the first SU(2), 
so I can neglect the first two families.

The phase transition will produce third family quarks and 
leptons (Δ of each, with B-L=0).  The baryons will quickly 
diffuse into all three families, because of the large quark 
masses and CKM angles.

The third family lepton number is frozen in the tau and 
its neutrino because ν masses are so small.



B=L=0!?
Below the top-flavor phase transition scale, the EW 
sphalerons are still active.

Since B-L=0, they can set B=L=0.  So they DO erase 
the baryon asymmetry we have generated.

But what they can’t do is change the distribution of 
lepton number inside each family individually.

So we end up with:

It turns out this will be good enough!
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EW Phase Transition
The Universe persists with no net baryon number until 
we reach the ordinary EW phase transition.

At that point, masses for the fermions turn on.

We can write the number densities of the fermions in 
terms of chemical potentials (in the limit T>>m):

EW sphalerons (+ fast flavor changing weak 
interactions) conserve three quantities:
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So for any system that starts with three Δ with some 
values, we can compute the resulting baryon density by 
inverting the three equations for μ:

Keeping the leading terms (assuming B-L=0), we obtain:

Remarkably, even for B-L=0, as long as not all of the 
Δ’s are zero, we do end up with a non-zero B.  Putting 
in the τ lepton mass and T ~ 100 GeV, we find the final 
baryon asymmetry is of order: 

...Resulting in B = 0!
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Critical Temperature
Having chosen the tree level 
parameters, we can compute the 
corrections to the Σ potential.

The important corrections come 
from the W’s and Z’.  (Self-
interaction corrects are small 
because the λ’s are).
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Figure 1: The effective potential as a function of the magnitude of the VEV for three

different choices of temperature. The phase of the VEV at each point is chosen as the

solution of the Equations of motion for that value of the magnitude.

Note that the one loop corrections from the gauge sector depend only on the magnitude
of the VEV u and not on its phase.

For the sample parameters chosen above, m = 200 GeV, D = 5 × 105 ei GeV2,
λ = λ′ = λ̃ = 0.05,and s2 = 0.4, we find that the critical temperature for these parameters
is Tc " 840 GeV, and the VEV at Tc is described by uc " 2.7 TeV, θc " −0.7, indicating a
first order phase transition that is easily strong enough. In Figure 1 we plot the effective
potential for several choices of temperature.

3.2.1 Bubble Profile and Evolution

At Tc, the rate for nucleation of bubbles with 〈σ〉 &= 0 becomes large, and the bubbles
expand to fill the universe with the true vaccuum. In this subsection we make some rough
estimates of the properties of the nucleated bubbles, which are pertinent to the eventual
generation of baryon asymmetry as they provide the out-of-equilibrium dynamics which
results in lepton-number being unequally distributed through-out the three generations.
We will simplify the treatment by considering the phase transition as a quasi-equilibrium
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Bubble Wall Profile
To study the parameters of 
the nucleated bubble, we can 
use the potential at the 
critical temperature.

We use an ansatz (based on  
a 3d kink) for the VEV as a 
function of radius:

We determine α variationally, 
by inserting the ansatz in the 
action  at Tc and minimizing 
with respect to α.
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Figure 2: The bubble profile at the critical temperature Tc for R = 10 TeV−1.

3.3 Diffusion Equations in the Topflavor Model

We now compute the prediction for the L3 generated during the transition in which the
Topflavor model breaks down to the SM. The underlying picture is similar to ordinary the
standard EWBG picture in the SM (or MSSM). The bubble of true vacuum is expanding,
and generates chiral charge through the CP -violating interaction of the plasma with the
bubble wall. In the specific case of Topflavor, the particles which interact strongly with
the wall are the Higgses, through the interactions in Eq (21). These charges diffuse freely
in the unbroken phase and are converted into B and L3 by a combination of the Yukawa
interactions and the unsuppressed sphalerons. As they pass into the broken phase, they
are frozen.

In the limit g1 ! g2, we neglect the SU(2)2 sphalerons associated with the first two
families. The quark Yukawa interactions and the QCD instantons, together with the fact
that all of the quarks diffuse at approximately the same rate, allows us to constrain the
light quark densities in terms of the right-handed bottom density b,

Q1L = Q2L = −2UR = −2DR = −2SR = −2CR = −2b . (33)

Thus, the species whose densities we will track are the left-handed top and bottom doublet,
Q ≡ tL+bL, the right-handed top t ≡ tR, the right-handed bottom b ≡ bR, the left-handed
lepton doublet L ≡ τL + ντ , and the Higgs h ≡ (h+

u + h0
u − h−

d − h0
d). We assume that

the H-H ′-Σ interactions Eq. (21) are fast enough such that the spectator Higgses H ′ are
kept in equilibrium with the Higgs, and thus h′ ≡ (h′+

u + h′0
u − h′−

d − h′0
d) = h, and we
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Diffusion Equations
Now we determine and solve the differential equations 
which describe the particle number densities induced 
by the passage of the wall.

The diffusion equations are based on the fact that an 
imbalance in number densities participating in any 
interaction which is taking place quickly will look like a 
source or sink for those species which are imbalanced.

Processes which are extremely fast will maintain 
chemical equilibrium, and allow us to reduce the 
number of species we include the equations.  (Other 
species are related to those by equilibrium conditions).

Cohen, Kaplan, Nelson PLB336, 41 (1994)



Equilibrium Relations
The net particle number for each species can be 
written in terms of a chemical potential μ: 

The k’s account for the internal degrees of freedom.

Fast weak/Yukawa interactions and strong instantons 
allow us to relate all of the light quark densities in 
terms of the right-handed bottom quark:

Q1L = Q2L = −2UR = −2DR = −2SR = −2CR = −2b

kQ = 6; kL = 2; kt = kb = 3; kh = 8

ni = kiµi

T 2
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Diffusion Equations
So the species we will consider are: 

The current conservation equation can be written:

where the diffusion constants D depend on the rate of 
interaction with the background plasma:

and v  is the velocity of the bubble wall as it expands, 
typically 0.01-0.1 for weakly coupled theories.
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Diffusion Equations
Which brings us to the diffusion equations:
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Γ1 : Top-flavor sphalerons
ΓQCD: strong instantons
Γy: Top Yukawa interaction

CP-violating source



The CP-violating source is induced by the bubble wall.

The change in the VEV of Σ is accompanied by a change 
in the CP-violating phase.

Σ interacts with the Higgs through terms such as:

This induces a shift in the properties of the Higgs inside 
and outside of the bubble, resulting in an imbalance in 
the Higgses and anti-Higgses transmitted/reflected from 
the bubble wall.  The source is non-zero only in the wall.

CP Violating Source
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Success!
Solving these equations 
yields the profile of the 
particle densities.

We place the wall at 
z=0.  Its width is               
~ 10/T ~ 10  GeV.

We find for the 
parameters we have 
chosen, we arrive at Δ 
of order 10, which 
including the dilution of 
10  yields about the 
right B.
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Figure 4: Particle number densities normalized to entropy as a function of spatial position

z for a bubble whose wall is at z ∼ 0 and parameters as described in the text. From top

to bottom, the curves are h, Q3, bR, L3, and tR.

Note that Ψ(z) = CIII for z > 0, so this last expression is in fact the final densities
produced by the phase transition.

Assembling the results, in Figure 4 we plot the densities normalized to the entropy,
s ∼ 2π2/45g∗T 3, where g∗ ∼ 100. The densities L3, t, and b are determined using the
relations Eqs. (59-60). For the chosen parameters, L/s ∼ 10−4, which results (including
the dilution factor) in a final baryon asymmetry after the electroweak phase transition of
∼ 10−10, exactly as observed. Of course, the particular value is highly dependent on our
choice of parameters, but the ability of the Topflavor model to produce this value is not;
the fact that the order of magnitude comes out correctly is indicitive of the fact that for
natural values of parameters, this model can produce an appropriate baryon number.
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Outlook
The specific result is (of course) dependent on the choice of 
parameters.  The value itself is not very interesting.

What is interesting is that for “natural” values of parameters, 
one can obtain the right ballpark for the baryon density.

Further, there are systematic features which decide whether 
or not this works in the Topflavor model:

A small quartic for Σ implies a light mass for the radial 
mode: about a factor of 10 lighter than the W’/Z’ masses.

Large CP violation which may be visible in Σ decays (which 
are mostly to Higgs).
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Outlook
The SU(2) x SU(2) phase transition should take place 
around the TeV scale, implying that the W’ and Z’s 
have masses accessible at the LHC.

For example, the W’s lead to an enhancement of s-
channel single top production!
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